Publications

2024

63. Repurposing endogenous type I-E CRISPR-Cas systems for natural product discovery in Streptomyces.

Zhou Q#, Zhao Y#, Ke C#, Wang H#, Gao S, Li H, Zhang Y, Ye Y*, Luo Y*

Nat Commun. 2024 Nov 13;15(1):9833. DOI: 10.1038/s41467-024-54196-z.

https://doi.org/10.1038/s41467-024-54196-z

62. Cryo-EM structures of ryanodine receptors and diamide insecticides reveal the mechanisms of selectivity and resistance.

Lin L#, Wang C#, Wang W, Jiang H, Murayama T, Kobayashi T, Hadiatullah H, Chen YS, Wu S, Wang Y, Korza H, Gu Y, Zhang Y, Du J, Petegem FV*, Yuchi Z*

Nat Commun. 2024 Oct 20;15(1):9056. DOI: 10.1038/s41467-024-53490-0.

https://doi.org/10.1038/s41467-024-53490-0

61. Study of sulfoglycolysis in Enterococcus gilvus reveals a widespread bifurcated pathway for dihydroxypropanesulfonate degradation

Chen Y, Chu R, Ma K, Jiang L, Yang Q, Li Z, Hu M, Guo Q, Lu F*, Wei Y*, Zhang Y*, Tong Y*

iScience. 2024 DOI: 10.1016/j.isci.2024.111010

https://doi.org/10.1016/j.isci.2024.111010

60. A Widespread Radical-Mediated Glycolysis Pathway

Ma K, Xue B, Chu R, Zheng Y, Shishir S, Jiang L, Hu M, Xie Y, Hu Y, Tao T, Zhou Y, Liu D, Li Z, Yang Q, Chen Y, Wu S, Tong Y, Robert C. R, Yew W, Jin X, Liu Y, Zhao H, Ang EL, Wei Y*, Zhang Y*

 J Am Chem Soc. 2024 DOI: 10.1021/jacs.4c07718

https://doi.org/10.1021/jacs.4c07718

59. Bacterial cysteate dissimilatory pathway involves a racemase and D-cysteate sulfo-lyase

Liu C, Ma K, Jiang L, Liu X, Tong Y, Yang S, Jin X, Wei Y*, Zhang Y*

J Biol Chem. 2024 DOI: 10.1016/j.jbc.2024.107371

https://doi.org/10.1016/j.jbc.2024.107371

58. Glycyl Radical Enzymes Catalyzing the Dehydration of Two Isomers of N-Methyl-4-hydroxyproline

Jiang L#, Yang Y#, Huang L, Zhou Y, An J, Zheng Y, Chen Y, Liu Y, Huang J, Ang EL, Zhao S, Zhao H, Liao R*, Wei Y*, Zhang Y*

ACS Catal. 2024 DOI: 10.1021/acscatal.4c00216

https://doi.org/10.1021/acscatal.4c00216

2023

57. 2,6-diaminopurine (Z)-containing toehold probes improve genotyping sensitivity

Kang S#, Liu Q#, Zhang J, Zhang Y*, Qi H*

Biotechnol. Bioeng. 2023 DOI: 10.1002/bit.28642

https://doi.org/10.1002/bit.28642

56. Mechanistic investigation of a D to N mutation in DAHP synthase that dictates carbon flux into the shikimate pathway in yeast

Liu H, Xiao Q, Wu X, Ma H, Li J, Guo X, Liu Z, Zhang Y, Luo Y*

Commun Chem. 2023 DOI: 10.1038/s42004-023-00946-x

http://doi.org/10.1038/s42004-023-00946-x

55. Oxygenolytic sulfoquinovose degradation by an iron-dependent alkanesulfonate dioxygenase
Ye Z#, Wei Y#, Jiang L, Zhang Y*

iScience. 2023 DOI: 10.1016/j.isci.2023.107803

https://doi.org/10.1016/j.isci.2023.107803

54. Isethionate is an intermediate in the utilization of sulfoacetate as a terminal electron acceptor by the human gut pathobiont Bilophila wadsworthia

Liu X#, Wei Y#, Zhang J, Zhou Y, Du Y, Zhang Y*

J Biol Chem. 2023 DOI: 10.1016/j.jbc.2023.105010

https://doi.org/10.1016/j.jbc.2023.105010

53. A variant of the sulfoglycolytic transketolase pathway for the degradation of sulfoquinovose into sulfoacetate

Chu R#, Wei Y#, Liu J, Li B, Zhang J, Zhou Y, Du Y, Zhang Y*

Appl Environ Microbiol. 2023 DOI: 10.1128/aem.00617-23

https://doi.org/10.1128/aem.00617-23

52. Anaerobic phloroglucinol degradation by Clostridium scatologenes

Zhou Y#, Wei Y, Jiang L, Jiao X*, Zhang Y*

mBio. 2023 DOI:10.1128/mbio.01099-23

https://doi.org/10.1128/mbio.01099-23

51. Alternative Z-genome biosynthesis pathway shows evolutionary progression from archaea to phage

Tong Y#, Wu X#, Liu Y#, Chen H, Zhou Y, Jiang L, Li M*, Zhao S*, Zhang Y*

Nat Microbiol. 2023 DOI:10.1038/s41564-023-01410-1

https://doi.org/10.1038/s41564-023-01410-1

50. A (S)-3-hydroxybutyrate dehydrogenase belonging to the 3-hydroxyacyl-CoA dehydrogenase family facilitates hydroxyacid degradation in anaerobic bacteria

Zhou Y#, Wei Y#, Jiang L, Zhang Y*, Jiao X*

Appl Environ Microbiol. 2023 DOI:10.1128/aem.00366-23

http://dx.doi.org/10.1128/aem.00366-23

49. Anaerobic purinolytic enzymes enable dietary purine clearance by engineered gut bacteria

Tong Y#, Wei Y#, Ju Y#, Li P, Zhang Y, Li L, Gao L, Liu S, Liu D, Hu Y, Li Z, Yu H, Luo Y, Wang J, Wang Y*, Zhang Y*

Cell Chem Biol. 2023 DOI: 10.1016/j.chembiol.2023.04.008

https://doi.org/10.1016/j.chembiol.2023.04.008

48. Dynamics of synthetic yeast chromosome evolution shaped by hierarchical chromatin organization

Zhou S#, Wu Y#, Zhao Y#, Zhang Z, Jiang L, Liu L, Zhang Y, Tang J, Yuan Y*

Natl Sci Rev. 2023 DOI: 10.1093/nsr/nwad073

https://doi.org/10.1093/nsr/nwad073

2022

47. New mechanisms for bacterial degradation of sulfoquinovose

Wei Y#, Tong Y, Zhang Y*

Biosci Rep. 2022 DOI:10.1042/BSR20220314

https://doi.org/10.1042/BSR20220314

46. Enzymatic synthesis of the unnatural nucleotide 2′-deoxyisoguanosine 5′-monophosphate

Zhao F#, Wei Y#, Wang Y, Zhou Y,Tong Y, Ang EL, Liu S*, Zhao H*, Zhang Y*

ChemBioChem 2022 DOI:10.1002/cbic.202200295
 
 
 

45. Anaerobic hydroxyproline degradation involving C-N cleavage by a glycyl radical enzyme

Duan Y#, Wei Y#, Xing M, Liu J, Jiang L, Lu Q, Liu X, Ang EL, Liao RZ, Yuchi Z*, Zhao H*, Zhang Y*

J Am Chem Soc. 2022  DOI:10.1021/jacs.2c01673

https://doi.org/10.1021/jacs.2c01673

44. Rapid antigen diagnostics as frontline testing in the COVID-19 pandemic 

Xu J*, Kerr L, Jiang Y, Suo W, Zhang L, Lao T, Chen Y*, Zhang Y*

Small Science 2022 Jul 5 : 2200009

43. (S)-3-aminopiperidine-2,6-dione is a biosynthetic intermediate of microbial blue pigment indigoidine 

Zhang Z, Li P, Wang M, Zhang Y, Wu B, Tao Y, Pan G, Chen Y*

mLife 2022  DOI: 10.1002/mlf2.12023

https://doi.org/10.1002/mlf2.12023

42. Genetic suppressors of Δgrx3 Δgrx4, lacking redundant multi-domain monothiol yeast glutaredoxins, rescue growth and iron homeostasis

Li G#, Nanjaraj A#, Dancis A* and Zhang Y*

Biosci Rep.  2022 DOI: 10.1042/bsr20212665

https://doi.org/10.1042/BSR20212665

41. Identification and characterization of the biosynthetic pathway of the sulfonolipid capnine

Liu Y#, Wei Y#, Teh TM, Liu D, Zhou Y, Zhao S, Ang EL, Zhao H*,  Zhang Y*

Biochemistry 2022 DOI: 10.1021/acs.biochem.2c00102

https://pubs.acs.org/doi/10.1021/acs.biochem.2c00102

40. Structures of PKA-phospholamban complexes reveal a mechanism of familial dilated cardiomyopathy

Qin J, Zhang J, Lin L, Haji-Ghassemi O, Lin Z, Woycechowsky KJ, Petegem FV, Zhang Y*, Yuchi Z* 

 eLife 2022;11:e75346

https://elifesciences.org/articles/75346

2021

39. Handheld microfluidic filtration platform enables rapid, low-cost and robust self-testing of SARS-CoV-2 virus

Xu J, Jiang J-C, Sun L, Liam Kerr, Paulsson, J, Zhang Y*, Lao T*

Small 2021 17(52):e2104009

https://doi.org/10.1002/smll.202104009

38.  Mechanistically diverse pathways for sulfoquinovose degradation in Bacteria

Liu J#, Wei Y#, Ma K#, An J#, Liu X, Liu Y, Ang EL, Zhao H*, Zhang Y* 

ACS Catal. 2021, 11: 14740-14750

https://pubs.acs.org/doi/10.1021/acscatal.1c04321

37. Biochemical investigation of 3-sulfopropionaldehyde reductase HpfD

An J#, Wei Y#, Liu J, Ang EL, Zhao H*, Zhang Y*

ChemBioChem. 2021, 22(19), 2862-2866

https://doi.org/10.1002/cbic.202100316

36. Structural and biochemical investigation of UTP cyclohydrolase

Zhang H#, Wei Y#, Lin L, Liu J, Chu R, Cao P, Ang EL, Zhao H*, Yuchi Z*, Zhang Y*

ACS Catal. 2021, 11(14), 8895–8901

https://pubs.acs.org/doi/10.1021/acscatal.1c02252

35. A widespread pathway for substitution of adenine by diaminopurine in phage genomes

Zhou Y#, Xu X#, Wei Y#, Cheng Y, Guo Y, Khudyakov I, Liu F, He P, Song Z, Li Z, Gao Y, Ang EL, Zhao H*, Zhang Y*, Zhao S*

Science 2021, 372(6541):512-516

https://www.science.org/doi/10.1126/science.abe4882

34. Structural Insights into the Diamide Modulation of Ryanodine Receptor.

Ma R#, Ghassemi OH#, Ma D, Jiang H, Lin L, Yao L, Samurkas A, Li Y, Wang Y, Wu S, Zhang Y, Murayama T, Moussian B, Petegem FV*, Yuchi Z*

Biophysical Journal. 2021, 120(3), 149a.

https://doi.org/10.1016/j.bpj.2020.11.1090

33. The glycyl radical enzyme arylacetate decarboxylase from Olsenella scatoligenes

Lu Q#, Wei Y#, Lin L, Liu L, Duan Y, Li Y, Zhai W, Liu Y, Ang EL, Zhao H*, Yuchi Z*, Zhang Y*

ACS Catal. 2021, 11(9) 5789–5794

https://pubs.acs.org/doi/10.1021/acscatal.1c01253

32. Glycyl Radical Enzymes and Sulfonate Metabolism in the Microbiome

Wei Y, Zhang Y*

Annual Rev Biochem. 2021, 90:817-846

https://doi.org/10.1146/annurev-biochem-080120-024103

2020

31. Serological antibody testing in the COVID-19 pandemic: their molecular basis and applications

Jiang J-C, Zhang Y*

Biochem Soc Trans. 2020 48 (6): 2851–2863

https://doi.org/10.1042/BST20200744

30. A transaldolase-dependent sulfoglycolysis pathway in Bacillus megaterium DSM 1804

Liu Y#, Wei Y#, Zhou Y, Ang EL, Zhao H*, Zhang Y*

Biochem Biophys Res Comm. 2020 Dec 17, 533(4), 1109-1114

https://doi.org/10.1016/j.bbrc.2020.09.124

29. Structural basis for diamide modulation of ryanodine receptor

Ma R#, Ghassemi OH#, Ma D#, Jiang H, Lin L, Yao L, Samurkas A,  Li Y, Wang Y, Cao P, Wu S, Zhang Y, Murayama T, Moussian B, Petegem FV*, Yuchi Z*

Nat Chem Biol. 2020 Nov;16(11):1246-1254

https://www.nature.com/articles/s41589-020-0627-5

28. A ferredoxin-dependent dihydropyrimidine dehydrogenase in Clostridium chromiireducens

Wang F#,Wei Y#, Lu Q, Ang EL, Zhao H*Zhang Y*

Biosci Rep. 2020 Jul 31;40(7):BSR20201642

https://doi.org/10.1042/BSR20201642

27. Two radical-dependent mechanisms for anaerobic degradation of the globally abundant organosulfur compound dihydroxypropanesulfonate

Liu J#, Wei Y#, Lin L, Teng L, Yin J, Lu Q, Chen J, Zheng Y, Li Y, Xu R, Zhai W, Liu Y, Liu Y, Cao P, Ang EL, Zhao H*, Yuchi Z*, Zhang Y*

Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15599-15608

https://doi.org/10.1073/pnas.2003434117

26. A pathway for degradation of uracil to acetyl coenzyme A in Bacillus megaterium

Zhu D#, Wei Y #, Yin J, Liu D, Ang EL, Zhao H*, Zhang Y*

Appl & Environ Microbiol. 2020 Mar 18;86(7):e02837-19

https://doi.org/10.1128/AEM.02837-19

2019

25. An extended bacterial reductive pyrimidine degradation pathway that enables nitrogen release from β-alanine

Yin J#, Wei Y#, Liu D, Hu Y, Lu Q, Ang EL, Zhao H*, Zhang Y*

 J Biol Chem. 2019 Oct 25; 294(43): 15662-15671

https://doi.org/10.1074/jbc.RA119.010406

24.  A gene cluster for taurine sulfur assimilation in an anaerobic human gut bacteria

Xing M#, Wei Y#, Hua G, Li M, Nanjaraj Urs AN, Wang F, Hu Y, Zhai W, Liu Y, Ang EL, Zhao H*, Zhang Y*

Biochem J. 2019 Aug 15;476(15):2271-2279

https://doi.org/10.1042/BCJ20190486

23. Identification and characterization of a new sulfoacetaldehyde reductase from the human gut bacterium Bifidobacterium kashiwanohense

Zhou Y#, Wei Y#, Nanjaraj A, Lin L, Xu T, Hu Y, Ang EL, Zhao H*, Yuchi Z*, Zhang Y*

Biosci Rep. 2019 Jun 20;39(6)

https://doi.org/10.1042/BSR20190715

22. A pathway for isethionate dissimilation in Bacillus krulwichiae

Tong Y#, Wei Y#, Hu Y, Ang EL, Zhao H*, Zhang Y*

Appl & Environ Microbiol. 2019 Jul 18;85(15)

https://doi.org/10.1128/AEM.00793-19

21. Biochemical and structural investigation of taurine:2-oxoglutarate aminotransferase from Bifidobacterium kashiwanohense

Li M#, Wei Y#, Yin J, Lin L, Zhou Y, Hua G, Cao P, Ang EL, Zhao H*, Yuchi Z*, Zhang Y*

Biochem J. 2019 Jun 11;476(11):1605-1619

https://doi.org/10.1042/BCJ20190206

20. Radical-mediated C-S bond cleavage in C2 sulfonate degradation by anaerobic bacteria

Xing M#, Wei Y#, Zhou Y, Zhang J, Lin L, Hu Y, Hua G, Nanjaraj A, Liu D, Wang F, Guo C, Tong Y, Li M, Liu Y, Ang E, Zhao H*, Yuchi Z*Zhang Y*

Nat Comm. 2019 Apr 8;10(1):1609

https://www.nature.com/articles/s41467-019-09618-8

19. Structure of glycerol dehydrogenase (GldA) from Escherichia coli

Zhang J#, Nanjaraj A#, Lin L, Zhou Y, Hu Y, Hua G, Gao Q, Yuchi Z*, Zhang Y*

Acta Crystallogr F. 2019 Mar 1;75(Pt 3):176-183

https://doi.org/10.1107/S2053230X19000037

18. Biochemical and structural investigation of sulfoacetaldehyde reductase from Klebsiella oxytoca

Zhou Y#, Wei Y#, Lin L, Xu T, Ang E, Zhao H*, Yuchi Z*Zhang Y*

Biochem J. 2019 Feb 28;476(4):733-746

https://doi.org/10.1042/BCJ20190005

17. Cloning and expression of a non-ribosomal peptide synthetase to generate blue rose

Nanjaraj A, Hu Y, Li P, Yuchi Z, Chen Y*, Zhang Y*

ACS Synth Biol. 2019 Aug 16;8(8):1698-1704

https://pubs.acs.org/doi/10.1021/acssynbio.8b00187

2018

16. Indoleacetate decarboxylase is a glycyl radical enzyme catalysing the formation of malodorant skatole

Liu D#, Wei Y#, Liu X, Zhou Y, Jiang L, Yin J, Wang F, Hu Y, Nanjaraj A, Liu Y, Ang E, Zhao S*, Zhao H*, Zhang Y*

Nat Comm. 2018 Oct 11;9(1):4224

https://www.nature.com/articles/s41467-018-06627-x

15. Developing a colorimetric assay for Fe(II)/2-oxoglutarate-dependent dioxygenase

Guo C#, Hu Y#, Yang C, Nanjaraj A, Zhang Y*

Anal Biochem. 2018, May 1; 548: 109-114

https://doi.org/10.1016/j.ab.2018.02.013

14. Characterization of santalene synthases using an inorganic pyrophosphatase coupled colorimetric assay

Hua G#, Hu Y#, Yang C, Liu D, Mao Z, Zhang L, Zhang Y*

Anal Biochem. 2018, Apr 15; 547: 26-36

https://doi.org/10.1016/j.ab.2018.02.002

2017

13. EPR studies of wild type and mutant Dre2 identify essential [2Fe–2S] and [4Fe–4S] clusters and their cysteine ligands

Zhang Y, Yang C, Dancis A, Nakamaru-Ogiso E

J Biochem. 2017, Jan; 161(1): 67-78

https://doi.org/10.1093/jb/mvw054

Before 2014

12. Conserved electron donor complex Dre2-Tah18 Is required for ribonucleotide reductase metallocofactor assembly and DNA synthesis

Zhang Y#, Li H#, Zhang C, An X, Liu L, Stubbe J, Huang M

Proc Natl Acad Sci U S A. 2014 Apr 29; 111(17): E1695-704

https://doi.org/10.1073/pnas.140520411

11. Frataxin-bypassing Isu1: characterization of the bypass activity in cells and mitochondria

Yoon H, Knight SA, Pandey A, Pain J, Zhang Y, Pain D, Dancis A

Biochem J. 2014, Apr 1; 459(1): 71-81

https://doi.org/10.1042/BJ20131273

10. Investigation of in vivo roles of the carboxyl terminal tails of the small subunit (ββ’) of S. cerevisiae ribonucleotide reductase: contribution to cofactor formation and inter-subunit association within the active holoenzyme

Zhang Y, Liu L, Stubbe J. Huang M

 J Biol Chem. 2013 May 17; 288(20): 13951-9

https://doi.org/10.1074/jbc.M113.467001

Selected as the “Papers of The Week”, highlighted at http://www.jbc.org/content/288/20/13960/suppl/DCAuthor_profile

9. Investigation of in vivo diferric tyrosyl radical formation in Saccharomyces cerevisiae Rnr2 protein requirement of Rnr4 and contribution of Grx3/4 and Dre2

Zhang Y, Liu L, Wu X, An X, Stubbe J, Huang M

https://doi.org/10.1074/jbc.M111.294074

J Biol Chem. 2011. Dec 2; 286(48): 41499-509
Selected as the “Papers of The Week”, highlighted at http://www.jbc.org/content/286/48/41499/suppl/DCAuthor_profile
http://www.asbmb.org/asbmbtoday/asbmbtoday_article.aspx?id=14939

8. Bacillus subtilis class Ib ribonucleotide reductase is a dimanganese(III)-tyrosyl radical enzyme

Zhang Y, Stubbe J

Biochemistry. 2011 Jun 28; 50(25): 5615-23

http://hdl.handle.net/1721.1/72129

7. Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster

Mühlenhoff U, Molik S, Godoy JR, Uzarska MA, Richter N, Seubert A, Zhang Y, Stubbe J, Pierrel F, Herrero E, Lillig CH, Lill R

Cell Metab. 2010 Oct 6; 12(4): 373-85

https://doi.org/10.1016/j.cmet.2010.08.001

6. Rim2, pyrimidine nucleotide exchanger, is needed for iron utilization in mitochondria

Yoon H, Zhang Y, Pain J, Lyver ER, Lesuisse E, Pain D, Dancis A

Biochem J. 2011 Nov 15; 440(1): 137-46

https://doi.org/10.1042/BJ20111036

5. Dre2, a conserved eukaryotic protein with both [2Fe-2S] and [4Fe-4S] clusters, functions in cytosolic iron-sulfur protein biogenesis

Zhang Y, Lyver, ER, Amutha B, Ohnishi, T, Pain, D, and Dancis, A

Mol Cell Biol. 2008 Sept; 28(18): 5569-82

https://doi.org/10.1128/MCB.00642-08

4. Mrs3p, Mrs4p, and frataxin provide iron for Fe-S cluster synthesis in mitochondria

Zhang Y, Lyver, ER, Knight, SAB, Pain, D, Lesuisse, E, and Dancis, A

J Biol Chem. 2006 Aug 11; 281(32): 22493-502

https://doi.org/10.1074/jbc.M604246200

3. Frataxin and mitochondrial carrier proteins, Mrs3p and Mrs4p, cooperate in providing iron for heme synthesis

Zhang Y, Lyver, ER, Knight, SAB, Lesuisse, E, and Dancis, A

J Biol Chem. 2005 May 20; 280(20): 19794-807

https://doi.org/10.1074/jbc.M500397200

2. Yeast frataxin solution structure, iron binding, and ferrochelatase interaction

He Y, Alam SL, Proteasa SV, Zhang Y, Lesuisse E, Dancis A, and Stemmler TL

Biochemistry. 2004 Dec 28; 43(51): 16254-62

https://pubs.acs.org/doi/full/10.1021/bi0488193

1. Overexpression of ccl1-2 can bypass the need for the putative apocytochrome chaperone CycH during the biogenesis of c-type cytochromes

Deshmukh M, May M, Zhang Y, Gabbert KK, Karberg KA, Kranz RG, and Daldal F

Mol Microbiol. 2002 Nov; 46(4)1069-1080

https://doi.org/10.1046/j.1365-2958.2002.03212.x

 

Patents

  1. 铁和α酮戊二酸依赖性双加氧酶的酶活检测体系和方法 (A generally applicable iron and α-oxoglutarate dependent dioxygenase enzyme assay system and assay kit). ZL 2015 1 0897467.5
  2. 催化谷氨酰胺合成靛蓝获得蓝色花卉的转基因方法 (A method to obtain transgenic blue rose by introducing non-ribosomal peptide synthetase catalyzing the formation of indigoidine from glutamine). ZL201810095829.2/US 12,049,635/JP 7194741
  3. 一种高产檀香油的重组酵母菌及其构建方法与应用 (A genetically engineered baker yeast strain and its application in  santalol oil production). ZL201910035457.9
  4. 半乳糖凝集素-3检测试剂盒 (Galectin-3 quantitation kit). ZL 2017 10589093.x
  5. 体外重折叠波形蛋白的方法及其应用 (A methodology for in vitro refolding of recombinant vimentin and its application). ZL 2017 10565618.6
  6. 黄嘌呤酰胺水解酶及其用途 (Xanthine hydrolase and its applications). JP 7546305. 专利申请号:202010036500.6. PCT申请号:PCT/CN2021/071501
  7. 生化检测分析设备及其应用 (The design and application of a high-throughput machine for immuno-based analysis). ZL 202022607089.1
  8. 异鸟嘌呤脱氧核糖核苷酸的制备方法 (Enzymatic preparation of isoguanine deoxynucleotide). ZL202210034330.7
  9. 4-脲基-5-羧基咪唑酰胺水解酶及其用途 (4-ureido-5-carboxyl-imidazole hydrolase and its applications). 专利申请号:202010036519.0. PCT申请号:PCT/CN2021/071497
  10. 参与噬菌体二氨基嘌呤合成的酶及其应用 (Enzyme involved in phage diaminopurine synthesis, and use thereof). 专利申请号:202110045505.X
  11. 一种基于Z-DNA的信息存储技术 (A technology for information storage based on Z-DNA).专利申请号:202211067651.3
  12. 用于1,2-丙二醇生物合成的多肽及其用途 (Peptides for 1, 2-propylene glycol biosynthesis and use thereof). 专利申请号:202311617289.7
  13. 制备1,2-丙二醇的生物学方法 (Biological method for the preparation of 1,2-propanediol). 专利申请号:202311615909.3
  14. 用于数据加密的系统、方法和装置 (System, method, and apparatus for data encryption).专利申请号:202311054830.8